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ABSTRACT

An analysis has been conducted of the capabilities of high

pressure ratio,, single-stage impulse turbines. Some recent experi-

mental work has shown considerable promise for these machines. This

work provides a tentative basis for better understanding the potential-

ities and peculiarities of such high performance turbines.

The present analysis indicates that well designed supersonic

-

rotor impulse turbines can be expected to produce static efficiencies

closely approximating those predicted by well-known (subsonic) curves

-p 4. 4.- .p.p. • blade -speed
of static efficiency versus -: E . .

.

. .

, T .J lsentropic jet speed

Apparently, there presently exists no generally applicable

method of blade row loss estimation in the case of supersonic flow.

An extension to the Ainley-Mathieson loss prediction procedures to

the supersonic case is proposed.

Experimental and estimated supersonic -rotor loss coefficients

of the present report differ little in magnitude from well-established

results for subsonic blades of similar deflections.

The effect of rotor incidence, in supersonic flow, has a

profound influence on pressure and velocity distributions throughout

the stage. The effect is inadequately explained by a recently proposed

theory. The present analysis proposes an alternative method for esti-

mating the effect.

A logical and straightforward procedure is developed for

selection of the "optimum" design point for a single-stage impulse
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turbine, given a required RPM, power output, and rotor blade root

stress.

The preliminary design of a large rocket-turbine is con-

ducted as an exercise in application of the foregoing developments.

This study was conducted as partial fulfillment of the

requirements for the Degree of Aeronautical and Astronautical Engineer

at the University of Michigan.
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I. INTRODUCTION

In recent years., considerable interest has centered around

the development of high pressure ratio turbine stages for rocket-

pump drive and other specialized applications. Desirable character-

istics are reliability and light weight, with high efficiency as a

desirable objective of lesser importance. One type of machine attractive

for these applications is the single-stage impulse turbine. This turbine

combines low axial thrust on the rotor with potential for high pressure

ratios and specific work output. The high pressure ratios normally

result in supersonic flow through the rotor, and very few experimental

results concerning these stages are available.

The present analysis is undertaken to explore the potential-

ities of such stages with the benefit of some recent test results. The

study is directed along three parallel, but distinct topics. These are:

(1

)

analysis of flow patterns and loss distribution within the stage,

(2) development of a scheme for selecting the design point to best

achieve specified design goals, and (3) a typical design problem

intended to illustrate the results of topics (l ) and (2).
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II. ANALYSIS OF LOSSES AND FLOW PATTERNS IN SUPERSONIC TURBINE STAGES

1. General Discussion

While a wide body of theoretical and experimental data are

available (e.g. Reference l) for predicting flow patterns and blade

losses at low Mach numbers, little information is available at super-

sonic velocities. As a consequence, turbines designed to operate in

these regimes frequently fail to achieve the expected performance and

pressure distributions. Two examples are the turbines of Reference 2

and J wherein the flow patterns, pressure distributions, and efficiencies

differed considerably from estimated design values. In both cases, the

results would indicate efficiency was lower than necessary, had the

losses been accurately predicted in advance and compensated for in

the design geometry.

The method of Reference k was utilized by the N.A.S.A. to

successfully correlate rotor blade momentum thickness and "specific

blade loss" with "blade surface diffusion parameter" for one family

of several transonic-rotor turbines. This method does not include

the effect of total rotor deflection angle, and has not been satis-

factorily generalized. The method predicts a grossly optimistic rotor

velocity coefficient for the turbine of Reference 2. The rotor deflec-

tion angle is 1^0 in the latter rotor as compared to only 8j in the

N.A.S.A. family, explaining the deviation.

While the loss prediction methods of Reference 1 are compre-

hensive, they are only recommended by the authors in cases wherein

-2-





3-

the flow is everywhere suhsonic. Hence, an extension in generality

to include supersonic rotor flow is essential to provide for accurate

flow channel layout and a more precise estimate of performance.

Figure 1 presents the performance of the two supersonic

rotor turbines of Eeference 2 and J, together with that of the N.A.S.A.

transonic family of References 5 through 10. For comparison, there

are the theoretical curves from References 11 and 12 and an unpublished

curve from the Aerojet-General Corp. The theoretical curves presumably

are intended to apply to subsonic stages only as no mention is made of

Mach number levels. Slight deviations between the curves are explained

by minor differences in the geometry and loss assumptions used in

deriving them. They may be assumed to fairly approximate the range

of efficiencies to be expected for single stage impulse turbines

having negligible Mach number effects.

Comparison of these curves with the experimental results of

the high performance turbines shows agreement which is enlightening,

if not surprising. It seems that no appreciable deterioration in

performance may be attributed to Mach effects. The mediocre effic-

iencies of the turbines of References 2 and J are evidently due to very

high leaving losses, while the N.A.S.A. family has low leaving losses.

The turbine of Reference 2 shows performance that is quite

encouraging when compared to theoretical values . It is no surprise

that this is the most recent and probably the most carefully designed

of the three. This turbine is designed for high (l40°) rotor deflec-

tion and maximum static efficiency. On the other hand, the N.A.S.A.
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family of turbojet research turbines are designed for high total

efficiencies, which average about 85$-

The relatively inferior performance of the turbine of

Reference 3 appears to result from causes other than the high Mach

number level, although insufficient data are reported to provide for

a precise analysis of losses. The performance evidently is degraded

by extremely severe flow separation from the rotor suction surface.

This explanation is substantiated by the almost negligible change;

in flow characteristics which resulted from a major modification of

the rotor profile. The modification consisted of reducing the blade

thickness about hO^o by removing metal from the suction surface. The

negligible resulting flow change indicates the flow was separated in

both cases, and demonstrates the ineffectiveness of profile modifi-

cations downstream of the separation point. Since the profile

violates the criteria of Reference 13, as discussed in II-5., consider-

able separation is to be expected. In addition to the separation

problem, the design apparently suffers somewhat from relatively

large tip clearance and "lap". "Lap" refers to a sudden annulus

enlargement immediately downstream of the nozzle exit.

Returning to considerations of the turbine of Reference 2,

Figure 1 also illustrates the margin of improvement - about two

percentage points in static efficiency - obtained by increasing

rotor flare enough to compensate for actual rotor losses. This

flare increase allowed design impulse conditions to be closely

approached, and illustrates the effect of accurate loss estimates

upon geometry and performance. Comparison of theoretical performance
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with the best performance of this turbine strongly indicates that

any losses associated with supersonic effects must indeed be

negligible. This deduction diametrically conflicts with standard

works (e.g. Section I+.5 of Reference l) which indicate a rapid

increase in losses as the rotor flow begins to exceed local sonic

velocity. Apparently a phenomenon exists which is similar to the

"sound barrier" drag increase of aircraft wings. Evidently, when

the flow just exceeds local sonic velocity, strong and near-normal

shocks exist which cause separation. Once the flow is fully super-

sonic, the flow field appears to stabilize to the extent that separa-

tion losses need be no more severe than in subsonic rotors of similar

geometry. The design criteria for minimizing rotor flow separation

are considered in II-5- For the present, it seems reasonable to assume

that the combined profile, secondary, and tip losses of the supersonic

rotor far outweigh any losses credited to supersonic effects.

2. Development of a Method for Loss Prediction in Supersonic Turbine
Blading

In view of the foregoing examination of Mach number effects,

the loss prediction methods of Reference 1 bear re -examination. The

basic Ainley-Mathieson loss parameter is

Y = (Total Inlet Pressure) - (Total Exit Pressure)

(Total Exit Pressure) - (Static Exit Pressure)

The total pressures are referred to relative and absolute velocities in

the rotor and stator cases respectively. Following Reference 1, the

total loss coefficient for a blade row, Y^,, is the sum of profile losses,





Y-nt secondary losses, Y^-,, and tip losses, Yv . Profile losses for

stator or rotor blading of arbitrary reaction are empirical functions

of solidity, deflection angle, and thickness ratio. Profile losses

are easily determined for blades of arbitrary reaction using the

methods of Reference 1 with Figures 2a and 2b, which are reproductions

of Figures ks. and 4b of Reference 1. In the present case attention is

directed only to the special cases of nozzles and impulse rotor blades.

In this case the value Yp is determined from Figures 2a or 2b, as

T
appropriate, for standard thickness — = .20. The profile loss estimate

for the nozzle or impulse rotor blade in question is then simply

The secondary loss equation is developed from relations given

in Reference 1. From Equation (k) of Reference 1, there is

From Appendix I, there is Cx = 2(s/c) (tanPx - tan|3y )cosPm (3)

and

(Cn ) = Y (-) cos 5P /cos 2 f3 (4)v D'sec sec v
c m 7

where the vector mean angle,

Pm = tan"
1

[| (tan Px - tan |3

y )] (5)

Here |3 is the gas angle -relative to moving rotor or stationary nozzle

as appropriate - and x and y refer to inlet and exit conditions
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respectively. Combining 2, 3, and h, there results

Tsec " " ^f

'

tan Px-tan Py ) (6.

The coefficient X is an empirically derived coefficient which accounts

for the effect of acceleration on secondary losses. Figure 17 of

Reference 1 correlates \ as a function of hub-to-tip radius ratio

p
and (Ay/ Ax ) . Since these data were presumably gather for low sub-

2 2
sonic velocities, it is assumed (P^./Ax ) = (W /w ) , where W is relative

2
gas velocity. Based on the foregoing assumption, (W /W ) should be an

x y

appropriate acceleration parameter independent of M. The assumed

variation of X with acceleration and hub-to-tip ratio is shown as

Figure 3. It should be noted that experimental points of the original

figure presented considerable scatter, whereas Figure 3 represents a

best fit of the data.

The tip clearance loss equation is developed from

^ . i 2t/i
( 7 )

Cjf 2 h / c

of Reference 1, page 13. Equation (7) is attributed to Carter, and

was developed on a theoretical basis for small deflections. However,

Reference 1 points out satisfactory agreement between (7) and tip

effects at large deflections, hence the extension seems justified

in the absence of a better theory. Similar to (k) above, there is

also

KV *r fc) ^B. (8)

COS^
y





Upon combining (3), (l), and (8), there results

_ 2(
^=o^

(tan f (9)
^ n cos Pm •>

For single stage stators, B = and (9) simplifies to

(y ) . e gt) !if% (10)
K s h cos Bm

Similarly, for impulse rotors with B = R
r
= 3, there results

(YK )B = 8(^)sin2R (11)

The secondary loss relation (6) may also be simplified.

In the case of impulse rotors (6) becomes

(Y ) = l6x sin
2R (12)

sec R

In the case of nozzles , Figure 3 indicates that for any practical

stator, Xs
= .OO55. Accordingly,, (6) becomes

(Ysec ) s
= M-oo55)x

sln h = .022 ^LhL (13)
cosPm cosRm

The stator coefficients, calculated in II-3, tend to be

excessively optimistic if (13) is used. Furthermore, the theoretical

development based on Reference 1 and leading to (13) has so far made

no allowance for effects of blade height on the magnitude of stator

secondary losses. However, the data of Figure 15b of Reference 1, as

well as Reference 9 a^d earlier tests, confirms that stator secondary

losses are inversely proportional to blade height, while solidity,

aspect ratio, and chord have negligible effect on stator losses. In





order to resolve the apparent cont rad.it ion, (13 ) has been modified

by the coefficient 6/h, chosen empirically based on test results

presented in II-3- Hence, the best estimate of stator secondary

losses is felt to be

The total losses of a blading row are determined by addition

of the profile, secondary, and tip losses calculated above. That is

Y
T " Y

P
+ Y

sec
+ Y

K fW)

The Ainley-Mathieson loss parameter may be converted to a pressure

coefficient or velocity coefficient to simplify subsequent calcula-

tions .

One may write

Px
" - P " P"/P " - 1

Y = — L. = x ' I (16)

P " - P 1 - P /P "

y y y y

(note P" becomes P' in the case of stationary blading). Then

1 ^_
Cp"V'/P

x"
=

1 +Y [i - (1 + Z^^ )

-7/r-i
]

(1T)

The pressure coefficient is seen to be a function of the relative exit

Mach number, M , as well as the loss coefficient and gas properties.

The conversion to a velocity coefficient is made using
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which is developed in Appendix III of Reference lk. Solving for \|r,

there results

t = [i + -—1-5 (i - c/nr 2 (is)

Equations (17) and (18) were programmed on a 7090 computer

and the results tabulated in Table I for 7 = 1.^-0 and 7 = 1.25- The

results are also plotted for 7 = 1.U0 and appear as Figures k and 5-

3. Comparison of Loss Prediction Theory With Available Test Results

The loss prediction theory of II-2 was compared with test

results for 7 rotors and 5 stators of experimental turbines. These

represent the currently available results that have been published

with sufficient information to provide a comparison between predicted

and experimental loss coefficients for blading rows. The comparisons

covered a moderately wide spectrum of Y, NL, degree of reaction,

deflection angle, solidity, aspect ratio and other parameters. While

the volume of test data is quite limited, agreement between theory

and experiment is reasonably good. The average deviation between

predicted and experimentally determined coefficients is about one

percentage point. The precision of both predicted and experimental

coefficients is probably no better than plus or minus one point, for

reasons discussed below. The comparative results are shown in Table II.

It was necessary to apply certain assumptions and approxi-

mations in compiling the data of Table II. The more important of these,

with reasons therefore, are:





-11-

(a) The N.A.S.A. rotors of Reference 5 through 9

were assumed to have tip clearance Ah/h = .02

or Ah = .042", since clearance was not specified.

The errors should be small, as YK < t Ym in all

cases.

(b) Geometric and velocity characteristics are deter-

mined for mean radius conditions, deemed repre-

sentative of the stage. This assumes that three-

dimensional effects are minor.

(c

)

The effects of Reynolds Number variation are

neglected. Reference 1 assumes (Re) = 2 x 10 ,

while the experimental turbines operated at (Re)

only 2 to 3 times this value.

(d) The rotor pressure coefficients were not quoted

explicitly in References 5 through 9- The co-

efficients were deduced from

(cP )H = K ~
?k 7

p°. z,i-rz= (i)
P
2 (0p )s

[(l-r,
T ) +1,0^7 ]*r

o

which is developed in Appendix B. While this relation

is exact, some interpolation was required to estimate

T^rj-i and Pu'/P ' ^rom ^he published turbine maps. The

stator coefficients were deduced from Reference 9-

k. Comparison of Typical Rotor Velocity Coefficient Estimates Obtained
by Different Methods

Figure 6 displays the estimated variation of rotor velocity

coefficient, as a function of deflection, for typical impulse blading.
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The subsonic reference curve is taken from Reference 12, and repre-

sents a mean obtained from a large body of experimental results.

The two supersonic curves were obtained following the method of

Tl~2, for a typical geometry. The comparison illustrates several

interesting features. The magnitude of the rotor coefficient estimate

differs relatively little between the subsonic and supersonic curves.

This is not too surprising in view of the comparisons shown in II-l.

However, the shape of the supersonic curves at high deflections appears

somewhat suspicious, as subsonic experience would anticipate a more

rapid deterioration of velocity coefficient. Since there is insuffic-

ient test data to confirm or deny the suspicions, one would probably

be well advised to use the more conservative estimate, or perhaps

a mean. One also notes the increase of \|/t, with M, for fixed losses,

Y. This trend is also seen in Figure 5.

5. Detailed Analysis of the Effect of Rotor Profile Geometry on Losses

Reference 13 reports extensive two-dimensional cascade tests

of rotor profiles. These tests compared conventional constant-

curvature steam turbine profiles to several experimental profiles

designed to minimize flow separation in supersonic rotor channels.

The inlet Mach number was 1.9 and deflection angle was 1^0 .

Schlieren photographs and total pressure measurements indicated

that the resulting "shockless" profiles essentially eliminated

shock-induced separation from the suction surface. The over-all

velocity coefficient correspondingly increased from .929 to .952.
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Reference 2 compared the conventional and shockless profiles

in a test turbine, which also operated with several combinations of

rotor "lap" and flare. Exact comparison between cascade and turbine

tests is difficult due to the limited number of configurations reported.

Furthermore, the rotor inlet Mach number was about 1.6 instead of the

design value of 1-9- The reduced Mach number resulted from off design

nozzle pressure ratio, the reasons for which are discussed in Section

II-6.

The maximum rotor velocity coefficient achieved in the turbine

was .872. This peak performance was obtained using zero lap, but

sufficient flare to approximately compensate for actual losses and

approach the design exit flow conditions. In another test, the

shockless profile increased total head efficiency about 2-l/2 percent-

age points, under otherwise identical conditions, while static efficiency

changed little if any. These results will be discussed in more detail

presently.

The shortcomings of the conventional, constant -curvature

passages are thoroughly explored on two-dimensional theoretical grounds

in Reference 13. Essentially, it is demonstrated that constant-curva-

ture passages cannot transform a uniform incident flow into a uniform

curved flow. Rather, from considerations of a characteristics net, it

is evident that the pressure on either surface undergoes a continuous

zig-zag pattern of abrupt increases and decreases throughout the length

of the curved channel. The pressure rises are expected to react with

the thickening boundary layer and produce separation from the suction

surface. Cascade tests demonstrated the predicted separation for the

conventional profiles.
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A second and complementary fault of the conventional profiles

is the likelihood of excessive channel width caused by too large a

spacing between blades. In supersonic rotor channels, the wider the

channel, the larger becomes the uncompensated convex surface acceler-

ation before the compression waves become incident. Hence, an

excessively wide spacing produces an increasingly severe pattern

of pressure fluctuations. Schlieren photographs also showed a

definite tendency toward focusing of the compression "fan" if the

spacing were too wide. The abrupt pressure rise triggered separation

and flow breakdown. It should be noted that supersonic rotor profiles

are determined from channel flow considerations, and solidity is not

an appropriate design variable.

The "shockless" profiles of Reference 13 were designed to

eliminate the foregoing objections. Their success in cascade tests

was mentioned above. An example design is discussed and constructed

in Section IV-5 and Figure 15. Essential features of the design scheme

are:

(a) Dual curvature, having an entry or transition

curvature half as great as the central or mid-

chord curvature. The transition curvature

extends to a position corresponding to intersections

of the first characteristics originating from the

opposite surface. Throughout the central region a

uniform free vortex flow is theoretically established

in planes parallel to the machine axis. A similar

transition at the channel exit reconverts the flow
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to uniform parallel exit conditions.

(b) A sufficiently small channel width to reduce to

acceptable levels the initial, uncompensated

acceleration along the convex surface. The

maximum recommended width is that prescribed

by a transition curvature having

(JX_) > cos (sln
-l 1 ) (!)

-out tran lxwz

(c) A channel width sufficiently small to preclude

deceleration to sonic velocity along the concave

surface. This requirement is generally less

stringent than (b), unless the incident Mach

number is near unity.

A comparison of cascade tests of the two profiles is seen

in Figure 7> where the data were collected from Figures 7 and 19 of

Reference 13- Aside from the obvious general superiority of profile

B, a closer analysis yields an insight into the nature of the compar-

ative losses. The general spanwise variation of losses indicates

the effects of secondary flows, wherein the end wall boundary layers

are "centrifuged" toward mid-span by secondary vortices (see Art.

I3.7 of Reference 12 for complete discussion). A fair estimate of

purely profile losses is probably obtained from the curve peaks,

near root (and tip). The greatly increased losses in the central

span region point out the predominance of secondary losses — in

qualitative agreement with the estimates of Table II for the rotor
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of Reference 2. The spanwise uniform superiority of profile B may-

be explained by a sharp decrease in profile losses with secondary

losses essentially the same in both cases. Hence one concludes

that the improvement shown by profile B is due to a reduction in

profile losses caused by virtual elimination of shock-induced

suction surface separation.

The ratio of losses between the profiles, in cascade, is

(ya/yb)Cascade
= "^ - ^-It obtained from Figure 5 using the reported

• 37

velocity coefficients. From Equation III-2-2, static efficiency is

directly proportional to (l + tp) for impulse turbines with all other

parameters assumed fixed. Thus, the relative improvement in r\ due to

profile B, if duplicated in the turbine, would be a factor of only

i-±-^2 __ 1#012>
1 + .929

The reported data of Reference 2 allows at least a rough

comparison of losses obtained using profiles A and B in the test

turbine. Total efficiencies were .610 and .635 respectively, with

only the rotor profiles changed. From Equation II-J-1, (Cp)g/(Cp)^ =

1.06 for stator velocity coefficient and total pressure ratio fixed.

Also, using Figure k for My * i.k, together with an estimated YA * .8k

from Table II, one may show (Y
A
/Y_)_ .

~ 1.18. Using Figure 5, the

improvement from, say Y ,8k to Y = .dh/l.lB = .71 is equivalent to

about .013 increase in \|r

R . Because tj is proportional to (l + \|0,

it is understandable that the static efficiency improvement, due to

the improved rotor profile, was indeed negligible in the test results.

Several important observations may be made from the results

of the cascade and turbine tests of the two profiles. It is obvious
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that the design features of the shockless profile B prove beneficial

in all cases. The relative improvement of profile B is considerably

less in the turbine, however, under this single set of test conditions.

This result, together with a velocity coefficient reduction from

tc ca(ie
= -952 to iR = .872, may be at least partially explained by:

(a) the likelihood of moderate flow separation in the

turbine rotor, while virtually none occurred in

cascade tests of profile B

(b) the degrading effect of tip losses, not present

in cascade, which also are proportionally more

detrimental to rotor profile B.

(c) off-design operation of the rotor, which

operated at M,, =1.6 instead of 1-9-

(d) other three-dimensional effects, such as radial

pressure gradients, which would be expected to

degrade the performance of moving blades.

In addition to the effects of profile changes, Reference 2

also illustrates another important facet of rotor losses and the

necessity for their accurate estimation during design. In one test

series, an improvement from T] = .50 to .52 and \|/R = .Qkk to .872 was

accomplished by a slight increase in the rotor flare. Both tests

used the "shockless" profile. In the first case the flare was based

on an estimated \|/R
= . 91 and, due to the magnitude of the actual

losses, the exit swirl angle (3r was constrained by continuity to be

considerably less than its design value. The increased flare approx-

imated actual losses and produced the increased exit swirl and efficiency.
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It is evident that an accurate estimate of the actual velocity-

coefficient may be considerably more important than the question-

able ability to increase it a few percentage points.

6. Analysis of the Effects of Rotor Incidence on the Supersonic Flow
Through Turbine Blading

On the basis of experiment, Reference Ik concludes that rotor

blading with non-zero edge thickness, in supersonic flow having a sub-

sonic axial component, is constrained by continuity to operate at a

unique incidence relative to the oncoming gas flow. This incidence

determines the gas direction relative to the rotor. Likewise, the

absolute discharge angle of the stator, as well as effective stator

exit area, is determined uniquely and is virtually independent of the

stator geometry. The rotor incidence effect, if uncompensated, can

drastically reduce the stator discharge area, pressure ratio, and

Mach number. The stator pressure ratio of the test turbine of

Reference 2 was reduced to between l/'2 and 2/3 of design value, for

example, due to existence of rotor incidence of k.5 • It is evident

care must be taken to estimate the rotor incidence and thus determine

the required blading geometry to minimize losses and obtain the

desired pressure and velocity distributions.

References 2 and l4 set forth a theory for determining the

unique incidence, i s Pg - P^ This theory will be stated briefly,

and its validity examined, in view of the importance of the incidence.

The incidence is postulated to be that for which the expan-

sion, corresponding to a Prandtl-Meyer turn of (32 ~ Pv ^s exac "tly

equal to the geometrically available expansion ratio (s cos £*-t)/scos f3 ,
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There is assumed to be a slender wedge leading edge with attached

shock, and negligible total pressure loss accompanying the expansion.

Hence, the problem as postulated resolves into simultaneous solution

of the continuity and Prandtl-Meyer relations.

The Prandtl -Meyer relation in this case simply v + (3 =

constant or

v (%5 ) = v (Mw
2

) + 02 -P5) = v (%) + ± CO

A convenient form of the one -dimensional, steady continuity equation

may be developed form

p VA = (— )(M n/tRT) A = constant (2)
RT

Hence,

PMA
constant (3)

n/T

But T = T" and P = .

ETWk
2 v v~

' 2

-I ana r = : ^_
rTTETMj (1 + ZziO777-1

Since T" is constant through a constant diameter rotor,

P"MwA

(1 1
7 ~L

ML2)7+1/2(7-1)
= constant (+)

2

Examining stations (see Figure 9) 2 and 3, just upstream

and downstream of the leading edge, one writes

A5 V M^ 1 + 2^ My,,2 7+1/2(7-1)

A
2

=
P," M„

3
1 + Z^M„

2
2

(5)
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From the blading geometry, there is also

A cos (3, - t/s

T- = \ ^A2 COS Po

Using C
p

= P,"/ Pp" and coml:>ining (5) and (6), there results

5
cP ^ (rT^J)

<*>

Equations (l) and (7) may he solved for two unknowns.

Typically, one knows My- f P*, and t/s and wishes to find M^ and Po.
2 2 3

The incidence is thus determined for a specified incident Mach

number and rotor blade profile.

Reference lk illustrates the theory for an example rotor

having P, = 70 and 1VU =1.9. Reference 2 compared estimated and

experimentally deduced incidence, with fair agreement, for P-z = 70°

and M^ = 1.6l. See Figure 8. Isentropic conditions are assumed

throughout

.

Upon close scrutiny, however, the above theory may be

shown to become absurd as the rotor blade angle, p,, is reduced

somewhat. The anomaly is easily demonstrated by a simple numerical

example

.

Suppose the (relative) incident flow occurs at M^ =1.6.

The corresponding Prandtl-Meyer angle for 7 = l.k is Vp = lk.9°-

Further suppose a fixed incidence of any reasonable magnitude, say

3 . Now using Equations (l) and (7), calculate the allowable edge

thickness t/s, for various P*. Assume isentropic conditions,

C
p

= 1.0.
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By (l), v,(M ) =17-9° which yields a corresponding

Mr,, = I.7O3. Equation (7) becomes
3

Ox 1.
t/s = cos p, - cos (P, + 3 )

-
703

1 + .2(1.703)

1 + .2(1.60) 2

2

= cos P
5

- 1.075 cos
5

+ 3 ) (8)

For P, = 70°., t/s = .027. However, upon reducing P* it is seen that

t/s decreases monotonically until t/s = for P, = 52° • The same

conclusions are reached regardless of the selected numerical values.

In particular, it is evident that breakdown occurs at even larger

P
5

if C
p
< 1.0 or M» > 1.6.

The physical explanation of the breakdown of the theory is

that, at sufficiently small blade angles, the turned and accelerated

Prandtl-Meyer flow (assumed) fails to encounter the requisite geometric

expansion necessary to satisfy continuity. In addition to the fore-

going arguments, it is also evident that the isentropic, irrotational

Prandtl -Meyer flow assumptions cannot hold in an actual turbine rotor.

In article 9-10 of Reference 12, Vavra has pointed out the inherent

danger in applying two dimensional analysis to such three dimensional

flows

.

Aside from the merits of the foregoing theory, rotor incidence

remains a physical reality with very important implications. Hence, a

more satisfactory explanation of its nature must be sought out.

One must agree the continuity relation (7) is valid. Having

decided the Prandtl-Meyer relation is not applicable in this case,

there remains one more unknown than available equations.
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Expanding the Mach number terra of (7) in a binomial

series, it may be shown that

-s A+^M^y^-i) _ i + € ^ 2 _ i} + s(e2) +

where e = .? - 1.

Substituting in (

r

j), there results

y+1 2

t/s = cos - I
+ e(~2~^2 - !)

cos P2 (9)
5

CP

From (9) it is evident that for moderate incident Mach

numbers, the magnitude of the incidence is relatively insensitive to

small differences between M^- and M^ .

Equation (9) was compared with the experimentally deduced

incidence of Reference 2. For design speed conditions, one is able

to deduce Cp/l + 1.9e)= •84. Assuming e > 0, one then concludes that

.Qk < Cp < 1.00 ; < e < .10 .

As stated earlier, a second valid equation in the unknowns

is apparently lacking. Since it seems probable e « 1 in cases of

interest, one might assume e = and rewrite Equation (9) as

t „ cos (3Q /,^\- « cos p^ - l£ (10)
Cp

The theoretical incidence of Equation (10 ) and of Reference

lk was compared with the experimental incidence of Reference 2. The

comparison is shown in Figure 8. There is fair agreement, at the
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design point, between the theoretical estimates for isentropic

conditions. Furthermore, Equation (10) is seen to agree with

experiment for Cp
= .84 at design speed and . 90 at zero speed.

This trend seems reasonable and agrees with the expectations of

the authors of Reference 2. Higher relative losses at design speed

are attributed to the reduced Mach number with correspondingly

stronger, and possibly detached, shocks.

By examining the design speed case further, one may deduce

the apparent proportion of total rotor loss, occurring at the leading

edge, which results in the 4.5° observed incidence. Over-all rotor

losses were reported as \|/ = .872. Using Figure 5, this loss corre-

sponds to (YrjOp = 1.12. Similarly, from Figure k the apparent lead-

ing edge loss, Cp = .84, corresponds to (Yttp)-d = -25- Hence, the

apparent ratio of leading edge to total rotor loss is .25/1.12 = 2/9-

As noted above, this apparent ratio represents an upper limit of

actual leading edge losses and, in effect, incorporates the effect

of any flow acceleration, e, which may occur at the rotor entrance.

From Equation (10), for a given blade (or gas) angle and incidence,

leading edge losses would be expected to increase with t/s. The

foregoing considerations are utilized to estimate incidence in the

design problem of IV-5

•

The result of a single experiment hardly constitutes a

reliable design rule. However, there is provided a reasonably con-

sistent account of the interaction between gas angles, blade angles,

and rotor geometry. As mentioned previously, care must be taken to
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accurately estimate incidence and preclude serious rotor-stator

mismatching with resulting Losses. One test cited in Reference 2

clearly indicates the criticality of the problem. Rotor blades

having negligible edge thickness -were run. During the course of

the test, the nozzle pressure ratio decreased from l6/l to I'^j'L,

corresponding to the accumulation of only a thin carbon deposit

on the rotor blades. Nevertheless, the buildup caused the

incidence to evidently increase some 2 in order to produce the

observed effect.





III. A RATIONAL TECHNIQUE FOR DESIGN POINT
SELECTION FOR SINGLE-STAGE

IMPULSE TURBINES

1. General Discussion

Given a design goal in terms of RPM and power required,

expansion ratio, working fluid, and thermodynamic inlet properties,

one is faced with the task of selecting a design point to satisfy

the requirements. Literally an infinite number of design points, in

terms of blade speed and gas angles, can meet the requirements. Hence,

the designer must choose the most desirable combination of high

efficiency, compact size and weight, and tolerable stress limits.

An obvious approach is a trial and error process. This results in

laborious calculations of debatable final success in determining

the "best" design point.

A single-stage turbine, especially one with a high expansion

ratio, will tend to have sizeable leaving losses. Hence, efficiency

is determined primarily by blade to isentropic jet ratio as seen in

Figure 1, while the blade speed is limited by material stress con-

siderations. Experience and the mission requirements generally

dictate desirable blade materials and allowable stresses. Thus one

might be well advised to restrict the infinite number of possible

design points to only those which satisfy some specified blade root

stress. One could then proceed to decide upon a desirable size,

weight, and efficiency combination to meet design requirements.

The following method is one way of logically deciding upon

the "best" design point. It requires neither machine calculations
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nor infinite human patience. The technique is applicable to single-

stage impulse turbines, totally independent of Mach number levels.

The loss coefficients which enter may be estimated by any means what-

soever, and are not related necessarily to loss prediction methods of

II-2. The nomenclature of the development is defined in Appendix A.

The method is applied to a design problem in IV.

2. Static Efficiency as a Function of Velocity Coefficients and Rotor
Deflection

In terms of Figure 9> Euler's Turbine Equation may be

expressed as

T) = 2 JL (W2
sin f32 + W4 sin PjJ (l

)

Cu
o

For symmetrical impulse blading of the present case,

P2
= P^ = p and W^ = \|r

R
W
2

Equation (l ) may be rewritten,

r\ = 2 -iL (1 + lO Wo sin P,

C 2
o

or

R y "2 "X1 K2

2 2_ £2 (1 + * ) sin P (2)
C
o

C
o

By definition, \|r = Vp/C , and (2) may be expressed

T] = 2^
s

2
(1 + \|r

R
) g sin p (3)

From the geometry of Figure 9>

= <Jl - S
2 cos2p - £sin P (4)
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Hence (3) may "be expressed

tj = 2\|z
o
2

(1 + O sin p 8(s/l - S^cos^P - Ssin 0) (5)
s r\

\|r-o is a known function of both (3 and £ , in general. \|/ is inde-

pendent of £ , but weakly dependent on (3 - through CU. Equation (5)

allows calculation of efficiency for selected design point coordinates

6 , P. While Equation (5) might be considered to "organize" the

search for a suitable design point, it places no restriction on the

blade stresses.

Incidentally, Equation (5) also illustrates the relative

importance of \|f

fl
as compared to tp> For example, a one percentage

point improvement in \|f should be roughly equivalent to a four point

improvement in \JrR , since \|/ » \|/ « 1.

3. Limiting Stress Requirement

For a selected blading material of a specified taper ratio,

including constant cross section blading as a special case, one may

show that blade root stress is proportional to the product of radial

acceleration and blade height. If bending stresses are neglected,

a ~ h ¥i (6)
R

By continuity, the mass flow rate is,

o
¥ = density x axial velocity x annular area, or

o
W - p]^ cos P Rh (7)

The exit density, p. , depends on pressure and temperature at

the blade exit. The pressure may be assumed independent of the vari-

ables and equal to exhaust pressure, provided the axial component of
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velocity is subsonic. The temperature will vary somewhat with

T] = T) (6jP)- If °ne neglects this variation, Equation (7) becomes

W ~ W^ cos P Rh (8)

1
For fixed power output, W . Since Wi, = t-oW„. Equation

T] t X\ d

(8) becomes

i ~ ^R W
2

cos p Rh (9)

Substituting,

1
h ~

^R W2^ cos P

into (6), there results

U 2 i
a ~ ^ n+B W

2
cos P (10 )

One notes that U/R, the angular velocity, is fixed in the

present case. Further, letting W* = % V^ ~ S , by assuming V,

independent of 8 and/6*, Equation (10) becomes

T|i|rR cos P

or

o"H^r S cos P = B = constant (ll)

The parameter B has stress units and may be viewed as an invariant

property of the particular design specifications and working fluid.

Experience indicates that B is indeed virtually constant over quite
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a sizeable range of $ , P variation, as illustrated in IV.

If one now selects a specific working stress a' as a design

objective, there results D = — = T)\|f 5 cos P (12)
a R

Thus, for a specified stress, the parameter D is a unique constant.

Furthermore, any design point satisfying (12) automatically satisfies

the imposed stress requirement, c~.

k. Combination of Performance and Stress Requirements

By combining the results of Equation (5) and (12) .

2^ s
2
(l + fo) sin S ( sll - ^cos^P - Ssin P) = J2 (13)n

Vr> 6 COS P

or

S ( n/1 -F cos 2P - Ssin P) I" 2ts Ol + VR ) sin P cos P (ik)
s T

R'

For convenience, one may define parameters

GAa)
2^s

2
\|rR (l + \|/R ) sin P cos P

F" = i
2
{Jl - ^cos^P - Ssin p) (lite)

Note that F" is a universal function of $ and P and could be tabulated.

Since \)r„ = i|rR ( S>P) and \|/ is assumed independent of P, while

D is a known constant (for a specified 3"), one may evaluate Equation

(lh) . There remains an unlimited number of admissible S , P coordinates

which are known to satisfy the imposed stress limit. The problem is

the selection of the most attractive S } P that represents a final

design point decision.
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As an aid in this decision one might examine some variable

additional relationships

.

For example, from (13),

,(S,p) =
D

(15)
\|rR 6 cos p

The rotor relative Mach number variation may be examined by noting,

W
2 6 V2

*»
2 n//RT

2 n//RT2

Furthermore, if Vp = ^S C is independent of P, as previously assumed,

it follows that To is likewise constant. Hence one notes,

\ ~ S (16)
^2

Variation in radius is simply determined from

U ~ R ~ 9 (17)

Reference 15 gives a useful empirical estimate for single-stage rocket-

turbine weight as

m,lb. = 70jt (R,ft.)
2

= 1-53 (R,in. )

2
(18)

Finally, since a ~ Rh ~ 9h, for constant RPM, blade height variation

may be deduced from

— = constant (19)
a

5 . Procedure for Application

Given power and RPM requirements, together with available

expansion ratio and turbine inlet conditions for a specified working
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fluid, one may proceed in an orderly manner to select the "best"

design point, as follows:

(A) Based on experience and operational objectives,

one makes a tentative selection of blade material

and one or more values of allowable centrifugal

blade root stress.

(B) A trial design point is selected in terms of an

arbitrary velocity triangle. As a minimum, one

evaluates, for the trial design point:

W P

a %
B %
h e

*o S
s

A single calculation of this type should suffice

provided the calculated stress is within, say + 50

percent of the selected values, cf.

(C) Calculate the invariant B - Equation (lII-4-ll).

(d) Calculate D corresponding to selected a - Equation

(lIlA-12).

(E) Plot F' against (3 (for a reasonable regime of P) -

Equation III-4-l4a. Consider \|/ constant as calcu-
s

lated in step (b). Consider tR
= ^(P.M^ ) ~ VR (P),

using constant M^. as calculated in step (b). The
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curves F' theN represent constant stress lines.

See Figure 10 for an example.

(F) Plot F" against $, for selected S = constant - Equation

II-4-lVb. Intersections of the constant S and constant

a curves determine unlimited compatible ( S , 3, a)

design point possibilities.

(G) For any desired ( £, , $, a) , calculate:

T) - Equation (III-4-15)

¥^ - Equation (III-4-16)

9 - Equation (lII-lf-4)

R - Equation (III-4-17)

U - Equation (lII-U-17)

m - Equation (III-4-18)

h - Equation (lII-U-19)

(H) As an additional aid in visualizing the variations,

plot t\ against (3 for a = constant. The addition of

£ = constant and 9 = constant points provides for ready-

visualization of the variation in t\, Mw , 9, R, U, m, and

h along the constant stress curve. See Figure 11.

(i) From the plot of (H)_, one may then select the most

attractive combination of features to fix the design

point (£>, 3, a). Estimate t\, Mw } 9, R, U, m, and h

for the selected design point. Repeat (b) to verify

the estimates above. One notes that the approximations

introduced into the technique are now discarded. A

second iteration of (C) through (i) would appear unnecessary

unless (i) indicates intolerable lack of agreement between

the rough and smooth design point estimates.





IV. ILLUSTRATIVE DESIGN PROBLEM

1. Specifications and. General Design Philosophy

An example of a preliminary design is presented to illustrate

the application of previously discussed methods of loss prediction

and design point selection. The specifications and gas properties

arbitrarily chosen are those which might correspond to turbodrive

requirements of a large liquid propellant rocket using reasonably

energetic chemical propellants.

Assumed output requirements are: 28,800 SHP at 15,000 RPM.

Assumed gas properties are:

molecular weight, On = 12.0 lb/mole

specific heat ratio, y = 1.25

constant pressure
specific heat c
* P

= .827 Btu/lb-°R

total inlet pressure P'
o

= ^50 psia

exhaust static pres-
sure Pl = 30 psia

gas constant, R = 128.8 ft -lb/lb- R

total inlet temp- T' = 2200°R
erature,

The turbine is to be of the single-stage, impulse type to

minimize axial thrust on the rotor bearings. A reasonable compromise

between static efficiency, size and weight, and simplicity is to be

achieved.
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2. Design Point Selection

The design point selection method described in Section III

is to be followed. A single, arbitrary trial design point serves

as a basis for selection of the final design point.

The available isentropic energy is,

^is - cp V n - (^
)r"1/7]

- 827 x 220° [1 - ^y20]
- 76° tst

o

The isentropic jet velocity,

C = N/2gJ£H = n/5 x 104 x 760 = 6l60 ft/sec
o B^IS

The isentropic Mach number,

(M_) jq
= J JL

[ (^)
7"1/7

- 1] = JQ [15'^ - 1] = 2.40

The subsequent steps correspond to those of Section III-5.

STEP A

Suppose consideration be given to blade root stresses of

30,000, 37,500, and 45,000 psia. Most suitable blading materials

are known to have densities of about O.3O lb/in^.

STEP B

For the first trial arbitrarily select ap = 65 , U/C = .3.

From Figure 1, the expected efficiency is . 60 < T) < .67- The mean

blade speed is, U = .3 x 6l60 = 1840 ft/sec. The mean blade radius is

_ IBM x 60
x _ lUa „

2it x 15000
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(l) Determination of Stator Velocity Coefficient, \|/ g
—

The mass flow rate is

550
o

=
SHP x fj% ^ 28800 x .707

t]AHis .64 x 760

The annulus area,

o o

A
2

= 2rtRh
2

= £ - H

RT2
2 ax,

2

=~ \|/

s
C
Q

cosa
2

li

WRT2
2

^s P2 Co cosa2 2irR

For an estimated \|r « .95.

AH
T = T ' - \|r

2 —— = 2200 - .95
2 I^2_ = 1570°R

2 ° s cP .827

and

1
lb 00 ft ~lb o42— x 128.8 1^^x1370 R

h a _ ,__ =1.12"
2 .95 x 30 ±° x 6l60 2- cos 65 x 2rt x 14.1 in = 9

in^ sec

approximate annulus height.

The nozzle secondary losses are calculated from Equation (II-2-14),

fv \ ill sln2aP
\ xsec/s _

,.

i2 cos am

where

Thus

Q^ = tan"1 (| tan C^) = tan"
1 (^J2l) = 47

°

_13 sin265°
m lk

sec s 1.12 cos 47°
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Stator profile losses are estimated from Figure 2a to be (Y ) = . 06.

Total stator losses, (Y
T ) S

= (Ysec ) s
+ (Y ) q

» .20. From Table I-d,

for M2 » 2.2, the velocity coefficient estimate is \|r = . 97^«

(2) Determination of some velocity triangle components - See Figure 9 -

V2 =
^s

C
o

= -97^ x 6l60 = 6000 ft/sec

Vax 2
= V

2
cos a

2
= 6°00 COS 65 ° = 2^

-. Vp sin OLo - U
, _-] ciiic „

P„ = tan"
1

(-^—Tj ) = tan
1 ^55 = 5^0'p - UQli v v

ax, 2 2535

w = Vax
? 2 = 2^^ = ^390

2 cos P2 cos 54.7°

S = w2/v2 = 4390/6000 = .752

9 = u/v2 = 18^8/6000 = .308

T T « -
2 ^ISl = 2200 - .97^ — = 1328

C

Cp . 827

vP 6000
Revised M = g = —-— = 2.29

-J/gRTp 72.0 n/1328

% = W2 = it59£ = 1.675

72.0 n/t2 2620

(3) Determination of rotor velocity coefficient, \|/-n

Rotor secondary losses are, using Equation (II-2-12), and

estimating X = .03 from Figure 3,

(Ysec)R " -
W sin% = -^ sin

2 5^7° - Og

Tip losses, assuming Ati/h = .03, from Equation (lI-2-ll)
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(Y
T

) = 8-0 — sin
2
P = 8.0 x .03 sin

2 54-7° - -16
K R h d

Profile losses are estimated from Figure 2b, (Yp)R
~ .12

Estimated total rotor losses are (Ym)-o = -60.

With an estimated rotor exit Mach number M^ s 1.6, the estimated

velocity coefficient from Table I-d is \|fR = .904.

The rotor coefficient compares with an estimated \|;R
= .898

from the subsonic reference curve of Figure 6 for |3 = 54-7° •

(4) Completion of velocity triangle and performance calculations

W
4

= %W
2

= '9°k x 459° = 337°

P4
- P2

= 54-7°

V „ = W, cos p, = 2290
ax, 2 4 4 —

—

V^ = ^Vj^ + (Wi, cos pu - U)
; 2680

-1/W^ -1/2290 v „ _^ . cos
HjJ-)

- cos (— ) . 3^3

o
work output,V= ^ =

UW2 (l+^R)sinp2 = i848x 4?90 x 1.904 sin 54-7

gj gJ 2.5 x 10 4

17 504 W =
50l+ Btu/^-

Static efficiency, T) = -^— =— = .663
AHIS 760

This estimate appears reasonable compared with Figure 1.

(5) Temperatures, annulus (rotor blade) heights, and rotor blade stress

Since total relative temperature is constant through the rotor

of constant mean radius,
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V = To
w2 = Tk + W4

2
= T>"

* 2 2gJCp
* 2gJCp

Since

2W2 /-, 2\ ,^oO ^39°
k

w,
- VV T^ T

2
+ ig% (1 - V> = 1528 + uTlfx^ (1 -** >

T, = 1413°R M„ =
W*

r
= 1.45

4 720 n/T,,

i _\ ,
2680

2
n o

Check work output, \f = c
p AT' = .827 (2200 - 1589) = 505 Btu/lb.

This constitutes a check for consistency of the velocity and temperature

distributions

.

The mass flow,

550 QWP
p 77S bH^

70T 2q8oo
W = — = —J

—

! = 40.4 lb/sec

V 504

o
W R To

The annulus, or rotor leading edge, height is ho =
2jtRP2vax,2

40.4 x 128.8 x 1328
ho - = 1.024"
d 2* x 14.1 x 30 x 2535

o _
h WRT4 = h. BL I- = 1-024 x^ x -JL = 1.207"
4

2* RP
4
Vax,4 "

2
T2% 1528 "**

The blade root stress is calculated assuming a blade of height

h. and density . 30 lb/ in*. The centrifugal stresses only are considered,

as bending stresses are expected to represent a small fraction of total

root stress.
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The root force, F - ma = (pA
c

-A lb ~sec
) (5L. co

2 ft/sec2 )

h
l+ R /2it 15000 n

2

g ft '12

F = pap z± £i- (** ^wuw
)c

g 12 60

h,
a = F/A - p ^t *_ (3

QQ0Q *)* = 1910 h],R psi
C

g 12 60 —
for h^ = 1.207" and R = 14.1" , a = 32600 psi

(6) Summary of step (b) results

T) = .663 \|/ = .904

W = kO.k lb/sec /& = 54-7°

a = 32600 psi 1^ = 1.675

R = 14.1" M^ = 1.45

h = 1.207" 9 = .308

STEP C

^ s = .97^ s = .732

B = 0fT}t-R S cos P a 8250 psi , the invariant
R

STEP D

h )
B 8250

B [1) = -7TT = = -275
a^1 ) 30000

D^ = .220 D^ = .I83

STEP E

Constant stress lines represented by F' ^ x > = p-
a|f

s^R (l+ ^R )sinPcosp

are plotted in Figure 10. For this calculation, i]r = .97^- = Constant, and

\|f^ = \Ir_ (S . M ) = 11^(3, 1.^-5) is assumed. The total rotor losses are
R R x ' wl ; t R v ' '
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esimated following step (B-3) to be

<Vr = <
Y
sec

+ YA + (Vr =
=

72^ + ' 12

The velocity coefficient, \|/R , is then easily calculated, as in Step

(B-3) as a function of variable B with M^. =1.45. A simple working

plot of ty = tr,(P) constructed from Table I-d is a convenience in

Steps (E) through (h).

STEP F

Curves of F" {&) for £t constant are plotted in Figure 10.

The range . 52 < 6 < .76 represents practical limits of interest and

increments of .02 are satisfactory.

STEPS G AND H

From intersections of S= constant and a = constant curves of

Figure 10, Equation (III-4-15) was solved for r\. Plots of T}(B)_
a - const,

are shown for the selected stresses in Figure 11. While not expected

to be quantitatively precise, Figure 11 condenses the design variables

into an easily digested presentation. Since T), M^ , R, U, hi depend

only on 0, £ , B, the selection of a design point to fulfill a

specified mission is considerably simplified.

In the present case, one can write,

(Eq. II-4-16), M ~ 1.675 -J- = 2.29 Sv2 . 732

(Eq. III-4-4), 9 = © ( S,P), plotted for convenience in the

regime of interest.

(Eq. III-4-17), R » lil —%s = 45.8 9
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(Eq. III-U-17), U « 1848 —— = 6000 9
.308

(Eq. HI-4-18), m & 1.53 (U5.8 9)
2

= 3220 9
2

, lb .

(Eq. III-4-19), h. « —— "k
x 1.207 = l.lU x 10" 5 -

o 32600 i

STEP I

A working stress must be selected. The blade temperatures

may be estimated, for a (turbulent) recovery factor of about . 9j to

be,

2 2

T
x,n

< T + .9 --%-— = 1328 + .9 x t-^22 . = i747°R = 1287°F.
blade - 2 ^ 2gJCp

J ' 4.13 x 104 -1—J !

From Figure 11, one notes that efficiencies are reasonably good for

ij = 3750O, with relatively little gain to be achieved at higher stresses.

Experience would indicate a - 37500 to be a logical choice for a

rocket turbine application of short running time. Ample safety factor

should be available for a blade material such as Inconel 703C a "t this

temperature

.

In Figure 11 for c = 37500, the regime, . 60 < S < .68 appears

most practical. A rough idea of the trade-off between fuel consumption

and turbine weight may be quickly made if desired. For example, com-

paring points at $-,= .66 and g„ = .62 shows the latter turbine would

weigh approximately An = 3220 (9^ - o|) = 3220 (.k2
2

- -37
2

) = 127 lb. more ,

The corresponding reduction in fuel consumption would be

o o o 530/778 SET ,1 1 v .707 * 28800 . 1 1
aw = ¥P - w-i = —

'

{
— - — ; =

{
—— - -; =

d L ah
is ^ n2

76o .761+ .794

1.34 lb/sec .
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The choice of S= .62 would appear advantageous only if the burning

time exceeds

An 127 n,
-o = —L- = 95 sec,
ZW l.jk

provided the objective is simply minimizing the sum of turbine weight

and total fuel consumed.

In the light of foregoing considerations a choice was made,

selecting: &= .6k, (3 = 60 with the assurance a « 37500. From

Figure 11 and Step H, the additional estimates are immediately available

~ -395

i)
~ .78

W ~ 3h lb/sec

%~ 1A6

R
~ 18.1"

h^ ~ 1.08"

U ~ 2370 ft/sec

m ~ 500 lb.

The design point selection technique has allowed a logical

and systematic choice of operating design point. It appears that a

considerable improvement over the original arbitrary choice has been

achieved. However, detailed design calculations must follow to verify

the choice and remove the inherent approximations.

3„ Detailed Design Point Calculations

The absolute gas angle required is

0t
2

= cos"1 ( S cos P
2

) = cos-1 (.6k cos 60°) = 71-35°
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and 9 = 1.0 sin a2 - S cos P2 = sin 71-55° - -64 sin 60° = . 392

(a) Recalculation of stator velocity coefficient, \|f s

In the manner of Step (B-l), i|f must be changed to incorp-

orate the revised Q^ and nozzle height. For an estimated ty * .96,

T? * 2200 - .96
2 -^ = 1355°R

827

3U x 128.8 x 1355
d

30 (.96 x 6l60 cos 71.35°) 2ir x 18.1

annulus height. For am = tan
-1

(| tan 71-35°) = 55-9°

= .92"., approximate

(Y )v sec *s

,13 sin2 71.35 c

92 cos 55.

9

P
224 (Yp )P's .06

Total stator losses, (Y+n+ L = .28. For M a 2.2, Table I-d gives
-tot's

is = -965.

It is evident that both (Cp) s and \|/_ depend on the, as yet

unknown, value of Mo - estimated to be 2.2. In subsequent calculations

it is assumed \|r
fl

= .965 to determine the actual Mo. The value of Cp

will then be revised, where necessary, to coincide with the newly

calculated Mo.

(b) Determination of some velocity triangle components

V = .965 x 6l60 = 3950 ft/sec

w2 = sv2 = .64 x 5950 = 3810

u 2330

6l60
378

= 72.0 n/13^5 = 2640

%,
3810

2640
1.44

vax 2
= 595° GOS 71-35 = 1900

U = ^ s o9 = 5950 x .392 = 2330

T = 2200 - .965
2 76° = 13l+5°R

d
.827

V2
= 5950 __ 2 . 25

d a
2

2640
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^R W2 • 91 x 38IO _ .

, ^ NEstimate M,
Tl

= -**—^-p- » —"
, .

= 1.28, with Tj, « 1^1 3 (Step B-5 )^ 72.0 Vtl. 72.0^ 1^13 4

(c ) Determination of rotor velocity coefficient, \|/p

W)r= -W 81x^60° = 06 (Yk )R(Y_„)p = .48 sin2 60° = .36 (Yk ) R = 8 x .03 sin2 60° = .18

(Yp) R
w .12 , and estimated (yt^R

= -^6

From Table I-d, for M^ = 1.28, \|/R
= .871

k
~ —> *R

An estimated \|/ = . 88l is obtained for comparison from the subsonic

reference curve of Figure 6.

(d) Completion of velocity triangle and performance calculations

Wr = .871 x 38IO = 3320 ft/sec V
,

= \|r V _ = .871 x 1900 = 1655
^" SIX ^ M- x\ SIX ^ £i

——

—

,1655 -

'1740'
V^ = ^1655^ + (3320 cos 60° - 2330

)

2
a - cos"1 (i^rr) 18.

2

C

= 1740

mean radius, R = 6o x 2330 x 12 = 17.
8"

2jt x 15000 —!

tt i 4. T7 2330 x 381O x I.871 sin 60° __,. _. ,_.
Work output, Vv = —— ~ JT^ = 575 Btu/lb.

2.5 x 104

W 575 s ° -707 x 28800 ,_ ,
,

i= m^'W " ^ w = ~^ = gA lb/sec

The calculated efficiency appears reasonable but perhaps

slightly optimistic, compared with Figure 1.

(e) Temperatures and total head efficiency

T^ T2+
2gt a-0=^+ ^^ x. 2^1=1429^

V=T, + j£- = 1^29 +
,

llk°2

k = 1502°R
4 h 2gJCp

y
4.13 x 10^





-45-

"\J = C
p

AT' = .827 (2200 - 1502) = 577 Btu/lb .

W4 3320m _ 2 _ ^ _ 1#22
^ 72.0^ 72.0 >y 1^29 —

72.0 nTt^ 72.0 n/ 1429

P^' = P^ (1 + ^ %2
F± 30 (1 + .125 x .64

2
)

5,0 = 38.5 psia

W _ 575 oiq^ =
aF~

=
.827 x 2200 [1 - (2§Z5"poy =^

IS 1+50

4. Nozzle Flow Analysis and Profile Layout

A detailed analysis of the stator losses and required geometric

layout is necessary. Pertinent assumptions are:

(a) flow within the nozzles (stations 0-1 ) is considered isentropic,

(b) all stator losses occur in and downstream of the exit plane,

between stations 1 and 2, and a uniform flow is established

beyond station 2. The losses between 1 and 2 are represented

by the coefficient \|/ = .965?

(c) continuity is satisfied between 1 and 2,

(d) tangential momentum is conserved between 1 and 2.

(e) the flow is adiabatic, Tp' = T,'.

The continuity equation is developed analogous to that

expressed by Equation (II-6-7) except using total temperatures and

pressures. The resulting relation is

r
t

\ l r M2 r
1 + - 125 mA ^-5

cos a, = (-) + cP _£
{

1—) COS CH

Ml 1 + .125 MQ
2





-46-

From previous calculations, a
g

= 71.35 , M = 2.25. The pressure

coefficient,

C = ^L = 30 (1 + .125 x 2.25
2 )^°

= 7T5P P
o' ^0

Hence, there is

t (1 + .125 M-,^)
cos °1 = (j) s

+ - 06l 3 Mi (!)

Tangential momentum conservation gives V-, sin a, = Vp sin Oi^

Tt __.._ „, _ „ rr-3r 1/ T
'

M
2
N/fgRT

1
sin a, = M, >/fgR 1/ tl sin a, = Mg \/?gT 1/

2 sinCU

or

sin % = ^ \ / ! + ^ Ml
2

sin a
2

= 2.25 ^l + .125Mf sln ^o
1

V 1 + Zli M 2 -V1+.125 x 2.25* Ml
2 2

n/1 + .125 M-l2
sin a, = I.67O ±- (2)

M1

For a nozzle with no trailing edge thickness, simultaneous

solution of (l) and (2) gives M
1

= 2.150, Q^ = 77.2° .

For structural integrity a nozzle having 10$ "blockage," or

t/S cos Qip = .10, is selected. Equation (l) then becomes

, n (1 +.125 Mi
2 )^' 5

cos a, = .0682 '——±J (3)
Ml

Solution of (2) and (3) gives Q^ = 75-3°^ \ = 2.178 for

the required nozzle exit conditions consistent with the desired (velocity

triangle of Figure 12) discharge flow. The blade angle turns out to be

about the largest practically acceptable value. If desired, the magnitude
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of d-^ could be decreased by providing a slight annular expansion

between stator and rotor.

The type of nozzle profile is probably not critical. A

"sharp-corner" nozzle of the type discussed in Reference l6 was chosen

somewhat arbitrarily. The sharp-corner nozzle, in general, provides

for the shortest possible nozzle length capable of a uniform discharge

flow. Its properties become much more favorable in cases having larger

nozzle pressure ratios and lower discharge angles than the present

example

.

Rather than using a full characteristics network, the approx-

imate nozzle contour required was obtained by calculating the required

throat angle, over-all area ratio, and the approximate orientation of

the limiting characteristics. The angle of turn at the throat is

simply — v-,, where v-, = v-,(Mt) the Prandtl-Meyer property angle corre-

sponding to the exit.

v = fE£ tan"1 ^ Z^. (MX
2 - 1) - tan"1 ^F^l

and — (y, )M p i78'
===17*9 > the required angle. The required area

ratio is obtained from one-dimensional flow theory. The relation is,

(e.g. Reference 17, problem 4.20),

a
Pq' 7+1/27 /

~i (PT~ j

(
2 7+1/2(7-1)

A
t

=

y (^ [(^) 7"±/7
-i] W

' 7-1 Pi

For M
1

= 2178,

P 5-0
Pq7 pq = (1 + -125 x 2.178 ) = 10.22





and
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Al
= (I0.22)-

90

tf-5
_

2<20
A+. Jo /m oo*20t ^8 (l0.22^U - 1 9

The schematic nozzle layout is shown in Figure 13.

The limiting characteristic of the throat fan, ab, stands

at approximately
fi

+ ^ = - 17.9 + sin"
1 [— -] =-17. 9 + sin-1 (y_7g^)

19»6 • The limiting reflected characteristic, be, stands at approximately

u = sin" ( £) = 27- 4 . Thus the minimum nozzle length is
2.I70

wt + j- 2°
:
f
o - (2.8 + 4.25) vt = 7.05 wttan 19. 6° tan 27.4

However, due to the required truncation of the nozzle at — - d-^ = ik.'J ,

the dimension bg must be no less than ^ wt = 8.38 w+ . Hence,
tan 14.7°

t

minimum throat to discharge dimension, parallel to nozzle axis, is

eb + bg = 2.8 + 8.4 w.|- = 11.2 w^. The resulting nozzle profile layout

is shown in Figure l4a.

Since the edge thickness, t, is l/lO the total width,

t = l/9 x 2.20 wt = .244 wt . Total width is w = 2.444. wt . 'The spacing

w 2.444 w+ ,<-
between blades is s = —— = „^ ^G = 9«o5 w+ . The number of

cos q;^ cos 75-3 -—-

—

z

blades Zs = EjtR _ 2it x 17.8 = 11.59
. For a selected throat dimen-

S 9* 65 W-^ W-j-

sion w-j- = .290", Z
s

= 40 blades. The nozzle cascade is illustrated

in Figure l4b.

The height of the nozzles (and annulus), may be more pre-

cisely calculated,

o _

h.
2

WRTp = 35.4 x 128.8 x 1345 B ^ng!" = h
PCVQV 2*R 30 x 1900 x 2* x 17.8 \

c. ax, d.

The total throat area is Z
shwt = 40 x . 961 x .290 = 11.14 in2





-49-

With the nozzle dimensions fully determined, the calculated

stator coefficient of Ill(a) should he checked. For a thickness ratio

t/c = .21 and solidity c/s = 1.U+, Figure 2a and Equation II-2-1 gives

Pi
(Yp ) q = - x .05 = .053- The secondary losses are (Y„ QJ C

-1±2_ Si2— '?• ^ = .272, where the blade angle rather than the gas
.961 cos 62. 3°

angle is employed to provide the most conservative estimate. Total

losses (Y-j- -j.) s = .33 exceed the estimated .28 of previous calculations,

Hence, from Table I-d, the estimated \|/ = .965 may be about .004 too

optimistic, but recalculation of IV- 3 seems unnecessary.

5- Rotor Flow Analysis and Profile Layout

A leading edge thickness ratio, t/s, must be selected first

so that incidence may be determined. For a chord of about 1", an

expected solidity c/s a; 2.5, and a desired edge thickness of about

.020", there is t/s = t/c • c/s » .020 x 2.5 = .050.

The incidence, Pg - £^, may be determined from Equation

(H-6-10), cos (EU = — + —„—§ . From considerations discussed in
J S Lp

II-6, it is assumed that about one-quarter of the rotor losses occur

around the leading edge - between stations 2 and 3.

For (Y
I^) R = - (YT )R = ^~- = .165 there results from

Table I-c, (Cp)^ = Cp (M = l.kk, Y = .165) = -90

Hence p, = cos
-1

(.050 +
COS

) = 52.8° and the incidence is 7. 2°.

.90

The assumed pressure loss has increased the incidence by about 3-7°

from the isentropic case. It is of interest that, were the blade

angle, £,, equal to 60°, the relative incident gas angle would be

about 66.1° and the nozzle pressure ratio would be greatly reduced

from the desired 15 to 1 value.
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The rotor profile was laid out following the scheme of

Reference 13 as summarized in Section II-5 of the present report.

As discussed in Section II-6, the rotor entrance Mach number, M^ , is

assumed equal to Mw = l.kk. It may exceed this value slightly, as

suggested by the discussion of II-6.

By Equation II-5-1,

(—— ) + r.„ n > cos \± = cos (sin" )

r
out

tran " 5 ^

(^) tran
> ^os (^n"1 jjL) = .720

f
2_v =

r°ut "
T±

< 2(1 - -720) ,p.^tran - rout + r± S
± + ^2Q

~ '32b

Theoretically a channel width-to-radius ratio of .326 would

just insure tangency of Mach waves with the convex surface, while allow-

ing an excessively large Prandtl -Meyer acceleration on this surface.

Hence, the authors recommend at least a 20 to 30^ reduction in (=r-),
' ^M tran

,W V

Accordingly, a design value, (xr-)-t- T, QY1 = -22 was selected. For an

arbitrary construction scale, let (rM ) tran =1.0, wtran = wcen = .22,

(ro)tran = 1.11, (r. ) + ran = «89« Since the curvature is to be doubled

in the central section, (rM ) cen
= -50, (rout ) cen = .61, (r^) cen = -39-

The profile is constructed, to arbitrary scale of 1.10"

channel width, in Figure 15. The transition curvature is 15° and the

leading edge consists of a 10 wedge. This is slightly less than the

maximum angle consistent with an attached shock. The edges could prob-

ably be rounded at a slight sacrifice in performance. From construction,
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the solidity, c/s =2.88 and the thickness ratio t/c = .l60. For a

selected chord of l", thickness at the shoulder chamber is approximately

.020" and the scale of Figure 15 is 5.74/1.

The number of blades required is calculated from

Z
E

. 2»R
= J*R_ __

2* x 17.8
_ ,2g blades

S S X =====:
c ' c

The rotor losses may be recalculated more precisely for com-

parison with (Ym) R
= .66 obtained in IV-3. For t/c = .16 and s/c = .35,

Figure 2b and Equation (lI-2-l) gives (YtJt, = 1^— x .13 = .104. Thev K .20

revised best estimate of rotor loss is (Ym) R
= .64. From Table I-d,

\|r

H
= ^R (Y = .6k, M = 1.22) = .868 ,

compared to the previous estimate of .871. From Equation (III-2-)), for

the final estimates of \|/ , \j/R _,
the final efficiency estimate is rj = .7^8.

From IV-k, h2 = h* = . 961", and

h,=hP
^ 1-= . 96liii29x J_ = 1.172"

^ 2T
2 % 13^5

From IV-2, a = 1910 Rh^ = 1910 x 17-8 x 1.172 = 398OO psi

B = cjti^^ S cos p = 398OO x .7I+8 x .868 x .6h cos 60° = 827O
R

Total weight, mi=3220 \
2 = 3220 (-392)

2
= ^95 lb.

6. Discussion of Resulting Design

The major numerical results are compiled for comparison with

estimates of IV-2.
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T) .7^8 B 8270 psi

O
W 35-4 :Lb/sec. P 6o°

a 39800 psi % = 1.1+4

R 17.8" %k
= 1.22

*s = .961 9 •392

*R = .868 s = .64

The calculated efficiency of . 7I+8 agrees well with that

indicated in Figure 1 for U/CQ = .378. Hence, a confident prediction

of efficiencies well above .7 offers encouragement for improvement

over the previously demonstrated performances of supersonic turbines.

The Design Point Selection Technique, leading to Figure 11,

proves to be of great assistance in presenting a thumbnail sketch of

available design choices. The slight variation from the predicted

values of IV-2 was obviously due to the reductions in both \|/ and \|r

R s

from the approximations assumed. Of particular interest is the observa-

tion that the "invariant" B changed only .24$ from the value based on

the original arbitrary design point.

Perhaps the most questionable area of the problem was that

of estimating rotor incidence. The theoretical basis is certainly

open to speculation, as discussed in II-6.





V. CONCLUSIONS AND DISCUSSION

This investigation indicates that well designed supersonic -

rotor single-stage impulse turbines are capable of rather impressive

performance. These machines appear to be an attractive compromise

between simplicity and high efficiency. Utilizing recent test results,

an effort is made to better understand the losses and flow peculiarities

of supersonic stages. Many questions are encountered which cannot be

decisively resolved without more tests of the quality previously reported

by the Aeronautical Research Council of Great Britain.

Analysis of supersonic turbine tests indicate that no appre-

ciable losses need be attributed solely to Mach number effects, pro-

vided certain design criteria are followed. The major rotor blade

design objective is the prevention of shock-induced flow separation.

Profiles have been recently developed by the Aeronautical Research

Council which virtually eliminate separation. In supersonic flow these

blades have much lower profile losses than the conventional constant-

curvature blades commonly used in subsonic rotors. Carefully designed

profiles yield considerably greater improvements in total efficiency

than in static efficiency. Properly chosen rotor blade flare, accurately

reflecting actual losses, has a considerable effect on static efficiency.

Since Mach number level need have no direct effect on blade

losses, an extension of the Ainley-Mathieson loss prediction procedures

to the supersonic case is proposed. Some straightforward modifications

to the basic procedure are adopted. The extension to supersonic flow

appears tentatively justified by the meager amount of available test

results

.
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The existence of a unique rotor incidence, in supersonic

flow through blades of finite edge thickness, profoundly influences

pressure and velocity distributions throughout the stage. The

incidence results from continuity requirements which demand a turning,

and probably an increase in velocity, at the rotor entrance. The

explanation of the phenomenon presented in Reference Ik and based on

Prandtl-Meyer corner flow is shown to be unsatisfactory. An alterative

explanation is developed based on the assumption of negligible velocity

increase. More experimental work is required to yield a clear under-

standing of this important phenomenon.

A technique is developed to assist the designer in selecting

the "optimum" design point for a single-stage impulse turbine having

specified RPM, power, and blade root stress. This method is independ-

ent of Mach number level and the method of estimating blade losses.

It greatly simplifies the decision by promptly resolving design point

selection criteria into a readily digested form.

The preliminary design of a large rocket-turbine is developed

as a numerical illustration of the foregoing procedures. Blade speeds,

but not necessarily stresses, are typically very high in order to

reduce leaving losses. The results indicate static efficiencies

exceeding .7 may reasonably be anticipated from well designed turbines

of this type

.
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APPENDIX A

NOMENCLATURE

A - area

B - function defined by Equation Ill-ij—11

c - chord

c - constant pressure specific heat
XT

Cp - pressure coefficient; ratio of actual to isentropic total
pressure

C - isentropic jet velocity corresponding to stage pressure
ratio

D - function defined by Equation III-A-12

F - force

F' - function defined by Equation III-U-l4a

F" - function defined by Equation III-4-l4b

g - gravitational constant

H - enthalpy

h - blade or annulus height

Ah/h- rotor tip clearance ratio

i - rotor incidence angle

J - mechanical equivalent of heat, 778 Btu/lb.

M - Mach number

m - mas s

N - RPM

P - pressure

R - mean blade radius

R - gas constant
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s - blade spacing

T - temperature

t - blade edge thickness

U - mean blade speed

V - absolute gas velocity

W - gas velocity measured relative to moving rotor

o
W - mass flow rate

\fj
- specific work

w - channel width

Y = total inlet pressure - total exit pressure
^ Ainley_Mathieson

total exit pressure - static exit pressure

loss parameter.

Z - number of blades

GREEK LETTERS

a

-

/ -

s «

e

o = u/v
2

X - secondary loss acceleration parameter of Figure J.

- wall angle

\J/
- velocity coefficient; ratio of actual to isentropic

velocity

r\ - efficiency (static)

a - rotor blade centrifugal root stress

p - density

absolute gas angle

relative gas angle

ratio of specific heats

w
2
/v

2

Mw
5

- Mw2
Mw

2
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t - maximum blade thickness

v - Prandtl -Meyer angle

sin" (tt)j the Mach angle

co - angular velocity

SUPERSCRIPTS AND SUBSCRIPTS

total gas properties referenced to absolute gas velocity

11 - total relative gas properties, refernoed to relative gas
velocity

q - stator inlet

1
- stator exit plane

o - downstream of stator, after mixing

^ - just after rotor leading edge

k - downstream of rotor, after mixing

A - profile A of Section II-5

«y - axial component

profile B of Section II-5

cross section

central or mid-chord rotor channel

inner or convex rotor profile surface

B
'

c

cen

l

-rg - isentropic

yr - rotor tip loss

rotor leading edge
LE

J4
- mean rotor profile curvature

vector mean angle

outer or concave rotor profile surface

m

out
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p - profile loss

d - rotor

o - stator

secondary loss
sec J

m - total loss, or total head efficiency

-j-
- nozzle throat

- rotor entrance transition channel
tran

tt - corresponding to relative velocity

- upstream, or inlet, position

downstream, or exit, position





APPENDIX B

DEVELOPMENT OF EQUATION II-3-1

By reference to a T-S diagram one may easily show (e.g.

Appendix B of Ref. h) that

(c }

V/V _ p4'/po'
? R ~

Ps'/Po'^'/To')
777 "1 " (Cp ) s (V/V)

777"1

T. '/T ' may now ^e expressed in terms of T]m and Ph'/p ' •

With Ti '

TCo the temperature corresponding to an isentropic pressure
H ) io

decrease top^', there is T^'jg = TQ
' (P^'/Pq '

)
" and

T
o' Vis V [1 " (V/V) 1

Since

\ 5
T°' - V = V - V
V - Vis ^I^V/V)1711177 ]"

there is

V/V = (1 - nT ) + nT (pi+'/Po')
7 "1 ?

and finally,

(0P ) r - V/V
'P^R

(c
p )s Ki-V +tiT(V/P

,

)
(7"1)/^ 7/7_1

-62-





-63-

o g- — m r» sr g- ;<0 o ;<0 m m ;in CO eg r- |en o ;r» in m eg Wi
o m H (" m o r» !* !lM !o> r- in m —

»

!o> r- •O i* m eg 'o o> CO r- •oo cr> 0> CO CO CO e- !•*" r>- !<o -0 •0 -o -o m m in in in in m g- g- g- g-

o >T leg * CO •o <o CO eg CO m i*
g- in !r» •-I in o o eg 0"> p" •o g- g-

o in l«-* (« m o p«- g- eg ce r- in m f-H o> CO -0 m ,ro eg o a- CO :p- •oo o> !ct> =0 CO CO f- r- r-- •o -0 •o -0 o in m m in in in in g- g- g- *

o m
i

m in o CO CO o in I** CO r~ r» CO i"-*
g- CO rn 0- 43 «> o> CO r-

o in h r~ g- o ^- in ;<\| !0 r» m m ph o CO -0 in m eg _H o CO r~ -n

o ce jo* CO CO CO p» e- r» |h- -0 o -0 <0 •0 in m m m in m in g- g- g-

o in m ^ m t-l M g-

i

i

o in fM re in cr m CO g- o CO •o g- ci eg
o ITt — ^- g- r* cr m fM o CO •a g- <\ IO CO r- in g- ft —* o cr> CO r-

o CT- a CO CO CO r- r- !r- r- -o -o -o •a -0 m in in m m in in g- g- g-

•a- ih -h

fO —

«

fO ^

fn ^

3 in o in o in o m o in o in o in o m o in o in o in o m o
3 O >"2

"J
eg eg m m g- g- m in c -o e- r- CO CO 0> 0> o o *"" "" eg





-64-

3 ty CT> c <7> CT- (7> [0> o> o> o"> 0> 0> o- o (7> C7> a> CT> ,<7> o> o> o> o> ;o>

3 O
3 <J>

3 0" a-

00
CO

in
CO
0>

co
CD

0>
,r--

o
0*

CO

0>

in
.0

0> o>
in m

0>

in
in in in

0">

iO
in
i0>

CO

-r
r-

0>

in
-» *

D m o ro C7> in C\l 0* NO m co •o m 0"> r- in >i o CO <0 in
D 0- 0> CO ico r- r- r- -0 •o -o .0 IT IT .n LI <* .* -3-

I-4" -a- -3" ro r^l pn
d a- t> Ct> lO^ o> o> <7> Cy CT> o o> O o> o 3< 0> a* o !o> o< 0> o O 0>

3 >»- 0> -»• o o (M CO >r CO m <M CT- r» -J- <\J o (•- in f^ o> i- in
J 0> CO CO |co r- r- vO -o ~0 m in J1 J- «r -)- *T ro r~i m m m IM rv; <VJ

3 <7> 0^ 0> i0> 0> o o> c C> cr o- O 0> 0> o> 0"> 0> 0* CT> o cr- <7> <J- o-

(M -H —1 —. —I

-I -H -l O

(M —> r*

fNJ ^ —

*

(NJ —

I

—

*

eg •-! -h

r^
r\i -i o>

LO
LO ro rg

CD CM
a;

ay

—

•

• o O O
II O • •

£ *V oir»oiAoiAoirtomomoinomoir»ouno^noi^o
O PH ^t ^-. -H ^





-65-

o
o
o

m
1A
o> CP eo CO

•r
o
ao

p-
r-

m
f-

0>

p-

m
o>
-0

o
m
<0

o
1*1

<0
o
in

P-
<P»
jl/N

•0
in

a-
in

ft
m

i

in

<0
o
m

CO r-
o
•c
*

o
o
o

•T
in
0>

CM
H

p->

p»
90 CO

m
o
eo

m
p- nj

r- 'a*

If*-
m
in
<0

m
m
•o

CP
in

O
CO

;in in

cp

m
in

in in

CO
om

in
CO
•J-

pn
vO

o
oo

in
in
CP

m
cp

in
p-
ca

o
CO

CO

o
ao

p-
r-

o
in
p»

•3"

p-

o
o

!p»

;p-
-0

w
<0

-0

n
r- o

o
>0

CO
in

p-

in
in
m

oo
mm

in

in

fM

m
o
m

CO
: co

r-
p-

o
*

o
o
o

in
m
PP

in r-
r-
eo CD CO

—

»

CO
*-

*
in
r-

co
(\J

p-
O icO

•0
<

fM in

o
CO
OS
in m

oo
in
in

NT
in

o
m
m

r-

m
I'm

o
in

CO
J-

fM
P-

o-

o
o
o

in
r- o

CO
CO

r-
<p

CO

in

CO
co
p-

0>
in

r-

o
rr

CO
CO
,<0

r-
-o
>o

CO

-0

CP
fM
o

IN m
cp
m

o
00
in

in

m
in
in

m
m
in m

o
in

o
o> P-

•J-

o
o
o

ao
in

o
fM

in
CO
CO

<M
in
oo

fM
00

m
CP
P- r-

fM
•*

P-

cp

p-

p-

.0

p-
r- in

*0

pi
NO

CM

.0

.0
o

o
cp
in

in
p-

in in

=0
-3-

in

in
m
in

ppi

CM
in in

o
o
in

O
*

O »-< -T —I

M
g

a h

fM ^^ ^

O -H

P- P-

O -H -H
r-l p^ O

-* in
fM —I

00 00





-66-

rvj —( *»t

co c\j
f\l ~* .-i

<\t —

i

~4

CM —

<

—

I

CN. —

'

—

<

CNj i-f ~H

<\J —

<

—I





67-

H

s
pq

li

ft
X

-p
w

0) ft
ft o
X

CO
CQ CQO ^^ O
Q
§§H H
S ft
s <
H 3
§
>H H

p
in S
K O
£• S3
ft k

So »

Q
En

En
CQ

oH
O
CO

a

o
CQ

O H
co oH H
ft ft< ft

SBO OO

Ph
O

EH
>H

>H

o
CD

CQ
>H

Ph
>h

Q0l

X
ca

^;

ft

ft
•H
-P
ft

$£

>>

3h

ft

H

3
pq

fto
EhO
ft

1 1 1 1

1 1 1 1

1

OJ

« £rCO

na
1 ON

CO

OJ UACO CO [— O
oaco o o\ o o i

CO CO OACO OA OA

OiaoihOO
o o\ o ca ca ca
OAco OAco CO co

i^O OJ -4 ir\ ir\ _4
OJ KA CM OJ OJ OJ CO

O O O O O O -4
t— C~— C— C— c— tr— utn

O O O O O O OJ

CO UA CO CO CO CO -4
OAVO CA CA OA G\ OJ
O H O O O O -4

O LfMAO lalaJ-
VO VO UA t~CO CO VOO O O O O O H

CO LT\CO CO CO CO

CACQ CA CA CA CA O
(A fO fO fO tA K> t^

O
OJ OJ OJ OJ OJ OJ

KA r<A ka nA na ka o
J- _Hr ^t J- J- _=J- f-

_rj- KA _h- _d- J- -4 o
H OJ rH H H H KA
O O O O O O O

O O O O O O G\
r- [— o- t- t— t-co

_d" VO -4 -4 -4 -4
LTN t— UA UA UA LfA O

H
OJ VOo CO

OJO OJo OJ
O

OJ -4
O VO

H rH H H H H
UA UA UA UA UA UA *=i»

t— C— : t— C— C-— C—VO

H
o
H

MA CO
H O

MA MA MA ON
H H H OJ

OJ
o

OJ
o OJo OJO

OJ
o

CO
OJ MA
O O

H H H H H H CO

OJ OJ OJ OJ OJ OJ o

H VO VO VO VO VO rH
CO H CO MACO CO -4

OJ OJ OJ OJ OJ OJ OJ

LT\VO C— CO CA CA OJ

H

pq

ftO
En

CO

H4H OIlA
CO CO CO CO LT\

CA OA CA CA CA

CO CO CO t— O
t— c— t-— t^vo
ON CA CA CA CA

I I I I

VO VO VO CO -4
c— i:— tr^— r-vo
O O O O MA

I I I I

VO VO VO VO OJ
VO VO VO VO -4
O O O O MA

O O O OJ OJ
H H H H OJ
O O O O O

CO H rAH
H OJ OJ OJ VO
VO VO VO VO c—

O O O O O

UA UA UA UA UA
UA UA UA UA UA
o o o o o

O O O O OA
t^- t— t- L^-CO

t— t— b— C—o o o o o

OJ OJ OJ OJ K^
H H H H H
H H H H OJ

H H H H
r<A MA r<A r<A O

t- t~- t— CO OA
O O O O O

I I 1 I I

H H H H CO

OJ OJ OJ OJ O

H H H -4 OA
-4 -4 -4 UA t>-

H A H r-\ H

OA OA CA O OJ
H





-68-

0.80

0.70

0.60

0.50

>-
o

y 0.40
o
u.
b.
UJ

U

<
0.30

0.20

0.10

0.20 0.30 0.50

BLADE VELOCITY
j

_U_

ISENTROPIC JET VELOCITY ' C

Figure 1. Comparison of Theoretical Efficiency Estimates for
(Subsonic ) Single Stage Impulse Turbines with Results
of Supersonic Turbine Tests.
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Figure k. Pressure Coefficient as Function of M, Y, 7 = l.k.
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Figure 5. Velocity Coefficient as Function of M, Y, 7 = l.k.
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Figure 10. F' and F" Functions for Turbine Design Problem.
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Figure 11. Constant Stress Efficiency Curves for Turbine
Design Problem.
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Figure ika. Design Nozzle Profile.

Figure lVb. Sharp-Corner Nozzle Cascade
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